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Abstract. A model is presented for polish-rate decay in chemical-mechanical polishing based on the Greenwood-
Williamson theory of contact between a smooth surface (a wafer) and a rough surface (the polishing pad). The
model assumes that polishing causes pad asperities to wear, with high asperities wearing faster than low asperities.
Model predictions of the time dependence of polish-rate decay compare favorably with experiments.
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1. Introduction

Depth-of-focus limitations of advanced lithography processes in the semiconductor industry
require that surface layers that are grown or deposited on silicon wafers maintain a high
degree of overall surface planarity. Many techniques have been developed for this purpose,
but most do not meet the stringent requirements of the most advanced, multilevel metallization
processes. The current preferred method for advanced planarization is Chemical-Mechanical
Polishing (CMP), which has been shown in many cases to yield the best results for wafer
planarity and uniformity.

In one large class of single-wafer CMP tools, the wafer is held upside down by a rotating
wafer carrier while being pressed against a soft rotating closed pore polyurethane polish-
ing pad or pad stack as shown in Figure 1. A chemically-reactive slurry containing a small
weight fraction of fine (100 nm) abrasive particles is sprayed on the pad ahead of the wafer.
Usually, a diamond-covered rotating disk called a conditioner is also swept back and forth
radially across the pad during wafer polishing. The purpose of the conditioner is to refresh
and roughen the pad surface. Pad-surface asperities that are tall enough to touch the wafer
trap abrasive particles and drag them across the surface. This abrasive action, combined with
chemical attack of the exposed wafer surface by the slurry, is thought to be responsible for
polishing. Although the broad outlines of the mechanisms underlying the CMP process are
qualitatively understood, many aspects of the process are not understood in detail and have
not been modeled.

One of the areas that is not well understood is the connection between conditioning and
the behavior of the average polish rate. A freshly conditioned pad usually produces a high
polish rate. However, if the pad is not conditioned, the polish rate drops rapidly with time. A
decrease of a factor of two or more in the rate is possible after an hour of unconditoned pad
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Figure 1. Schematic of a typical single-wafer CMP tool.

use. This is very undesirable from a manufacturing perspective because it affects throughput
and cost.

The cause of polish-rate decay has been somewhat of a mystery. One polish-rate study [1],
which used optical interferometry to characterize pad surfaces automatically, found little or no
visible change in pad appearance or surface-roughess statistics (standard deviation, skewness,
kurtosis) after the first few minutes of polishing of a thick layer of deposited silicon dioxide,
even though the polish rate declined continuously. This suggested that polish-rate decay is not
caused by changes in pad-surface morphology. However, another study by a pad manufacturer
[2], also using interferometry but with filtering of points far from the surface plane of the pad,
detected wear of interpore asperities that was correlated with a decrease in oxide-removal rate,
suggesting that there is a connection between rate decay and surface morphology.

Here, we present a simple model of polish-rate decay that explains the polish-rate time
dependence seen in the measurements of [1], while at the same time explaining why significant
changes in the overall pad-surface statistics were not evident. The model at the same time is
in agreement with the observations of [2].

2. Polishing-pad physical properties

Some discussion of CMP pad physical properties will be required for understanding of the
polish-rate-decay model. We focus on the Rodel Corp. IC1000 pad, which is often used for
planarizing silicon-dioxide films. The IC1000 is a thin (≈ 1·35 mm) void-filled polyurethane
polymer sheet. The voids, which do not usually appear to be interconnected, average 30 mi-
crons in diameter and occupy about 35% of the volume of the material (Figure 2). When
cleanly sliced along a plane, the surface of the pad is about 50% covered with exposed pores
and is naturally rough. Conditioning adds to this natural roughness in the interpore areas.
Evidence of the latter can be seen in the background at the top of Figure 2. The interpore
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Figure 2. Scanning Electron Micrograph (SEM) cross-section of a used, conditioned IC1000 polishing pad.
Surface asperities can be seen in the background at the top of the image. (Data by Letitia Malina, Motorola)

asperities, or surface summits, are the pad features that actually make contact with the surface
of the wafer. We note that conditioning also produces gradual thinning and shaping of the pad
surface. While shaping can cause center-to-edge polish-rate variations on a wafer, it has little
impact on the average polish rate.

The wafer and the surface materials that are usually polished have elastic moduli that are
on the order of 100 GPa. By comparison, the IC1000 pad is very soft. Figure 3 shows the
modulus of a dry IC1000 sample as a function of temperature and time as measured with a dual
cantelever constant-strain test on a dynamic mechanical analyzer (DMA). In this test, a fixed
strain is applied to a pad sample and the reaction force from the pad is measured as a function
of time. It can be seen that the IC1000 behaves viscoelastically since the reaction force decays
with time. Relaxation to a point half way between the initial modulus and the equilibrium
modulus occurs in about 2–4 minutes. The pad modulus is also sensitive to temperature.
Furthermore, water is a plasticizer for polyurethane, so it possible for the relaxation modulus
of a well-soaked pad to be less than that of a dry pad by a factor of ≈ 3–5.

In a polishing experiment, the relative sliding velocity between the pad and wafer is around
1 m/sec. For an 8-inch-diameter wafer, the actual contact time between a fixed point on the
pad and the wafer surface is consequently no more than about 0·2 sec, which is much less than
the time scale for viscoelastic relaxation. Thus, we will treat the pad as if it were elastic and
will ignore residual strain that may accumulate in an asperity on successive passes under the
head. We will assume that the pad surface is being washed with room-temperature slurry and
that its temperature is 20 C.

3. Pad/wafer contact model

Greenwood and Williamson [3] developed a model for contact between a smooth flat surface
and a rough surface using Hertzian contact theory [4, Chapters 4, 11]. In the Greenwood and
Williamson model, the surface of the pad consists of a population of summits, or asperities,
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Figure 3. Dynamic Mechanical Analyzer (DMA) raw relaxation-modulus data for the IC1000 as a function of
temperature. The actual modulus can be obtained by multiplying each curve by 50. (Data courtesy Diane White,
Motorola)

Figure 4. A flat wafer in contact with a rough pad surface. The separation d between the pad and wafer is measured
from the mean plane of the pad surface. Asperity heights are also measured from the mean plane.

of area density ηs whose heights relative to the mean plane of the surface have probability-
density function (pdf) φ(z) (Figure 4). All asperities are assumed to have spherical tips of
identical curvature κs and are presumed to behave elastically. If an asperity has height z and
the distance of approach between the wafer and the mean plane of the pad is d < z, then in
the Hertz theory it will carry the load

L = 4/3E∗/κ1/2
s (z − d)3/2 (1)

over a circular contact region with area

A = π(z − d)/κs, (2)

where E∗ = E/(1 − ν2), E is the pad Young’s modulus and ν (≈ 0·5 for polyurethane) is the
Poisson ratio.
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If there are N summits in a nominal area of A0, so that ηs = N/A0, then it follows that the
nominal pressure (the total load divided by the nominal area) at separation d is

p̄ = 4/3ηsE
∗/κ1/2

s

∫ ∞

d

(z − d)3/2φ(z)dz (3)

and the ratio of the actual contact area to the nominal area is

Af = πηs/κs

∫ ∞

d

(z − d)φ(z)dz. (4)

The above two equations form the Greenwood-and-Williamson model.
Asperity abrasion is the critical element in the current-rate decay model, so the pdf φ in

the above model depends on time; i.e., φ = φ(z, t). Polishing experiments are also generally
performed at a constant nominal pressure p̄. The separation d(t) required to maintain load
balance in Equation (3) is therefore time-dependent. It is also likely that the curvatures of
summits in contact with the wafer decrease over time at a rate that depends on their initial
height, so that κs should in fact be a function of z and t inside of the above integrals. Worn
summit tips will in general be non-spherical, complicating the contact analysis based on
the Hertz theory. However, we find reasonable agreement with experiment without including
curvature evolution.

The distinction between the nominal area of contact A0 and the real area of contact A =
Af A0 is important. The real area of contact between rough surfaces is usually very small.
Optical measurements of the contact between a dye-covered IC1000 pad and a sapphire disk
under loads that are consistent with CMP practice indicate that 1% or less of the pad surface
is in contact with the wafer [5, pp. 81–85]. Therefore, when slurry-fluid-pressure effects are
small, the actual contact pressure between pad asperities and the wafer is larger by a factor of
100 or more than the nominal contact pressure. We will connect this actual contact pressure
at an asperity tip with the asperity wear rate.

4. Wear of the pad and the wafer

The formulation of an evolution equation for the asperity-height distribution φ(z, t) is straight-
forward. Consider an asperity of height z with constant cross setional area (appropriate if the
amount worn is small relative to the height). From Archard’s law [6], the rate of wear of the
asperity is proportional to the actual contact pressure,

dz

dt
= −ca(L/A) (5)

= −ca

4

3π
E∗κ1/2

s (z − d)1/2, (6)

where ca is a parameter that is proportional to the sliding velocity of the asperity tip relative
to the wafer.

The rate of change of the fraction of summits in the range (z, z + �z) equals the rate at
which eroding summits enter the interval from above minus the rate at which they leave from
below. Combining this with the above equation, we have

∂

∂t

∫ z+�z

z

φ(u, t)du = ca4E∗κ1/2
s

3π
((z + �z − d)1/2φ(z + �z, t) − (z − d)1/2φ(z, t)). (7)
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It follows by approximating the left side by ∂/∂tφ(z, t)�z, dividing by �z and taking the
limit as �z → 0 that for z > d,

∂φ(z, t)

∂t
= ca4E∗κ1/2

s

3π

∂

∂z
((z − d)1/2φ(z, t)), (8)

while for z ≤ d the rate of change of φ(z, t) is zero. This is the evolution equation for the
asperity-height distribution. It requires an initial condition, φ(z, 0) = φ0(z).

The behavior of the solution of the above equation at large times can be understood by
considering the physical picture of asperity wear at constant separation d. Initially, all of the
asperities of height z > d are in contact with the wafer and wear at rates that increase with
height. At long times, the heights of the contacting asperities all approach d. Thus, the area
under the pdf to the right of d is converted into a delta function at d while the rest of the
distribution is unchanged.

Wear of the wafer is usually modeled with Preston’s equation [7], an empirical relation that
says that the average wear rate is proportional to the product of the nominal pressure and the
sliding velocity V . Recognizing that only a fraction of the pad area is in real contact and that
this fraction increases gradually as asperities wear, we instead hypothesize that the average
removal rate RR(t) is proportional to average real contact pressure, or equivalently that

RR(t) = cwp̄

Af (t)
(9)

where p̄ is the nominal pressure and cw, like ca , is proportional to the relative sliding velocity.
Like Equation (5), the above rate expression is a form of Archard’s law.

There is a difference between wear of the wafer and wear of the pad asperities in that the
wafer is always in contact with the pad but a given pad asperity is not always in contact with
the wafer. In a CMP tool, as in Figure 1, pad-asperity wear should depend on the accumulated
contact time and therefore will change with distance from the center of the pad. For simplicity,
we model the wear rates at the wafer center, where the asperity-contact time is related to the
wafer-contact time by a constant scaling factor.

5. Numerical method and comparison with experiment

The mathematical model describing the CMP removal rate with rate decay is then

p̄ = 4/3ηsE
∗/κ1/2

s

∫ ∞

d(t)

(z − d(t))3/2φ(z, t)dz, (10a)

Af (t) = πηs/κs

∫ ∞

d(t)

(z − d(t))φ(z, t)dz, (10b)

∂φ(z, t)

∂t
= ca4E∗κ1/2

s

3π

∂

∂z
((z − d(t))1/2φ(z, t)), (10c)

RR(t) = cwp̄

Af (t)
. (10d)
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This set of equations can be solved numerically with the following procedure:
1. Initialize φ(z, t) to φ0(z);
2. Solve for the load-balancing separation d(t) using (10a);
3. Calculate the actual contact-area fraction Af (t);
4. Integrate the evolution equation for the pdf for one time step;
5. Calculate the removal rate;
6. Increment the time and repeat from (2) until done.

The data that we will use for comparison with the model is the total removed over succes-
sive time itervals. The total amount removed, TR(t0, t1), between time t0 and t1 can trivially
be obtained by integrating the instantaneous removal rate,

TR(t0, t1) =
∫ t1

t0

RR(t)dt. (11)

The main difficulty in the procedure outlined above is in the integration of Equation (10c),
which is similar to a Hamilton-Jacobi equation. Even at very small time steps, explicit numer-
ical schemes eventually develop instabilities as the evolving tail of the pdf approaches a delta
function. However, we were able to obtain reasonable solutions over most of the duration of
an experiment reported in [1] using standard fourth-order Runge-Kutta for time integration
and centered finite differences for the spatial derivative.

In [1], silicon-dioxide-coated wafers were polished for a total of 60 minutes without pad
conditioning. The pad surface was characterized initially and at five-minute intervals of pol-
ishing using automated optical interferometry. The surface-characterization data included the
standard deviation of surface heights, the skewness and the kurtosis. This is sufficient for
description of the surface pdf using a Pearson IV distribution. A plot of the initial surface-
height pdf constructed from this data is shown in Figure 5. In the absence of asperity-height
data, we use this function for φ. The right-hand tail of the pdf is the portion in contact with
the wafer and the mean is located at the mean plane of the pad surface. The shape of the left-
hand tail is determined mainly by the pad-pore structure while that of the right-hand tail is
influenced by conditioning, wear and possibly by plastic deformation.

To supply the remaining parameters that are needed for the model, in the absence of data
from Stein we take values of the asperity density ηs = 2 × 108/m2 and summit curvature
κs = 2 × 104/m from [5]. These parameters are difficult to measure, vary considerably from
pad to pad and are dependent on the details of the conditioning process. We used for the
room-temperature pad modulus E∗ = 119 MPa, which has been been reduced from DMA
data by a factor of 5 to account for soaking in water. For the nominal contact pressure, we
use Stein’s p̄ = 50 kPa. The wear coefficients ca and cw are treated as adjustable parameters.
They were selected so that the modeled amount removed agrees with the measured amount at
5 and 10 minutes. This occurs when cw ≈ 1·6×10−16m/sec/Pa and ca ≈ 2·5×10−16m/sec/Pa.
These values are consistent with the plausible notion that the asperities wear faster than the
chemically attacked wafer surface.

Using the selected parameters and pdf, the calculated total thickness removed at five-
minute intervals is compared in Figure 6 with the measurements of [1]. At 45 minutes, further
integration of Equation (10b) with fourth-order Runge-Kutta becomes too unstable to con-
tinue. It can be seen that the solution up to this point reproduces the time dependence of the
decline in the amount removed beyond the first two data points, which were used to estimate
the wear coefficients. Since the removal rate is proportional to the reciprocal of the contact
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Figure 5. Pdf of surface heights constructed from data in Stein [1]. The mean of the pdf is 0, and the standard
deviation, skewness and kurtosis (taken as in Stein to be the fourth moment over σ 4) are 14·6 microns, −0·98 and
4·1, respectively. The vertical lines divide the graph into ≈ 1σ strips.

Figure 6. Amounts of silicon dioxide removed calculated using the present removal-rate model compared with
data from Stein.
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Figure 7. Evolution of the tail of the pdf in Figure 5 at five minute intervals using Equation (10c). Developing
instabilities are evident in the pdf tails at longer times.

Figure 8. Calculated standard deviation, skewness and kurtosis of the distributions in Figure 7. The standard
deviation is in microns; the skewness are kurtosis are unitless.

area fraction, rate decay in the current model can be traced to an increase in the contact area.
In this instance, the contact area fraction is predicted to increase from 0·29% at five minutes
to 0·51% at 45 minutes. These magnitudes are consistent with the data given in [5].

Figure 7 shows the evolution of the tail of the original pdf at five-minute intervals. It can
be seen that the secondary peak that occurs due to wear of tall contacting asperities moves to
the left and becomes progressively narrower and higher as time passes. The location of the
peak is approximately at the load-balancing separation d at each time. Thus, the separation
between the pad mean plane and the wafer decreases as the taller asperities wear away. The
total decrease in d over the 45 minute simulation is 7·9 microns. In [2], a decrease in interpore
near-surface asperity height of 1·5 microns was observed after eight minutes of polishing (with
a different slurry) at twice the plate speed and about half of the applied load. Preston’s equation
implies that the removal rates in the Oliver and Stein experiments should be comparable. In
fact, we find a 1·8 micron decrease in d after eight minutes vs Oliver’s 1·5 microns.
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Finally, Figure 8 shows the evolution of the standard deviation, skewness and kurtosis of
the distributions in Figure 7. It can be seen that these parameters are quite stable with time.
The calculated variations are well within the measurement accuracy of [1].

6. Summary and conclusions

We have presented a model for decay of the average polish rate in chemical-mechanical pol-
ishing in the absence of pad conditioning. The model is based on Greenwood-and-Williamson
contact mechanics and on Archard’s wear law. The effect of wear on the polish rate occurs
though an increase in the real contact area fraction with time. The contact area in turn depends
on the asperity-height pdf, which evolves according to a Hamilton-Jacobi-like equation. Using
experimentally realistic values for the initial pad-roughness statistics, the pad elastic modulus
and the asperity density and tip curvature, we have found that the model correctly yields the
observed time dependence of rate decay using two adjustable rate parameters. Predictions of
the contact-area fraction and the amount of wear of the highest asperities also agree with data.
Finally, the model explains why changes in the overall surface-roughness statics may not be
observed, thus resolving the apparent conflict between the Stein-and-Oliver experiments.

Aside from explaining rate decay, the value of this model lies in the connection that it
makes between the pad properties and roughness statistics and polish-rate decay. The pdf of
the pad surface is determined by the pad-pore structure and by the construction and operation
of the conditioning tool. Thus, it may be possible to use the model in conjunction with a
conditioning model to predict how different conditioning strategies will affect polish rates.
Control of polish rates and polish-rate stability is the bottom line for industry.

7. Afterword

Nearly a year after this paper was written, the traveling secondary wear-induced peaks pre-
dicted in this paper were detected using high-resolution optical interferometry [8].
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